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Renormalization group for renormalization-group equations toward
the universality classification of infinite-order phase transitions

Chigak Itoi*
Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z1

Hisamitsu Mukaida†

Department of Physics, Saitama Medical College, Kawakado, Moroyama, Saitama, 350-0496, Japan
~Received 13 April 1998; revised manuscript received 24 June 1999!

We derive a renormalization group to calculate the nontrivial critical exponent of the divergent correlation
length, thereby providing a universality classification of essential singularities in infinite-order phase transi-
tions. This method thus resolves the vanishing scaling matrix problem. The exponent is obtained from the
maximal eigenvalue of a scaling matrix in this renormalization group, as in the case of ordinary second-order
phase transitions. We exhibit several nontrivial universality classes in infinite-order transitions different from
the well known Berezinski�-Kosterlitz-Thouless transition.@S1063-651X~99!05010-2#
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I. INTRODUCTION

The Berezinski�-Kosterlitz-Thouless~BKT! transition is
well known as an infinite-order phase transition@1#. The cor-
relation lengthj has an essential singularity at the critic
coupling parametergc ,

j;exp~Aug2gcu2s!, ~1!

with the critical exponents51/2 or 1. In c51 conformal
field theory ~CFT! @2#, there are infinitely many model
where infinite-order phase transitions can occur. Any one
them shows the same universality as the BKT transition.

One observess different from 1/2 or 1 in somec.1
CFTs @3–5#. Recently, a model of a quantum spin cha
whose long-distance behavior is described by the lev
SU(N) Wess-Zumino-Witten~WZW! model, was studied by
Itoi and Kato @3#. They pointed out that an infinite-orde
phase transition with a critical exponents5N/(N12) oc-
curs by an SU(N) symmetry-breaking marginal operator.
the N53 case, this corresponds to the gapless Haldane
phase transition in a spin-1 isotropic antiferromagnet in o
dimension. In a problem of dislocation-mediated meltin
some curious numbers were observed by Young, Nelson,
Halperin@4#. They obtaineds51/2 for a model on a squar
lattice, s52/5 for a simplified model on a triangular lattic
and a nonalgebraic numbers50.369 63 . . . for ageneralized
model. In Ref.@5#, Bulgadaev studied topological phase tra
sitions inc.1 CFT with non-Abelian symmetry, where non
Abelian vortices play an important role. They belong to sp
cial classes of infinite-order phase transitions and sev
series ofs dependent on the symmetry of the system w
found. Though there have been several studies on diffe
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types of models with infinite-order phase transitions inclu
ing the BKT type, the universality classification by this crit
cal exponent still remains a challenging problem.

In this paper, we study the universal nature of the criti
exponents in infinite-order phase transitions. We show th
the critical exponents is determined from the operator prod
uct coefficients of the marginal operators that cause
infinite-order phase transition. It is shown that a margina
irrelevant operator can also affect the value of the criti
exponents.

The critical exponent of the correlation length is extra
ted from a long-distance asymptotic form of running co
pling constants, whose leading term is determined by
motion of the coupling constants near a fixed point.
an ordinary finite-order phase transition, we linearize
renormalization-group equation~RGE! around the fixed
point and can derive the exponent exactly. Namely, we
show that the inverse of the exponent is equal to the maxi
eigenvalue of the scaling matrix defined by the derivative
the beta function at the fixed point. One does not have
solve the differential equation exactly in order to obtain t
exact critical exponents in this case. In the infinite-ord
phase transition however, the scaling matrix vanishes, s
the phase transition is driven only by marginal operators.
far, one has had to solve the differential equations explic
to obtain the critical exponent, although RGEs with multip
variables are generally nonintegrable due to their nonline
ity except for some fortunate cases such as the BKT tra
tion. This difficulty is one of the reasons why the universal
classification of infinite-order phase transitions by the criti
exponents in Eq. ~1! has never been successfully done.

In order to resolve this problem, we apply anoth
renormalization-group~RG! method developed in Refs.@6,7#
to studying the long-distance asymptotic behavior of the
lution of the original nonintegrable RGE. This RG method
starting to be recognized as a general tool for asympt
analysis. Chen, Goldenfeld, and Oono@7# introduced the idea
of RG to singular perturbation theory and gave a unifi
treatment. According to Bricmont, Kupiainen, and Lin@6#,
the RG transformation for a partial differential equation

d
,
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defined as a semigroup transformation on a space of in
data, which is generated by a scaling transformation co
bined with time evolution. Koike, Hara, and Adachi used th
general method in the study of the critical phenomenon
the Einstein equation of the gravitational collapse with f
mation of black holes@8#. Tasaki gave a pedagogical e
ample of the RG transformation, where the equations of m
tion in Newtonian gravity were analyzed@9#.

In Sec. II, we reuse the RG transformation of Ref.@9#,
which enables us to calculate the critical exponents in Eq.
~1! without solving the nonlinear differential equation expli
itly. Our RGE considers the straight flow line in the origin
RGE as a fixed point, where the derivative of the beta fu
tion in this RGE generally has nonzero value. In Sec. III,
show that the inverse of the maximal eigenvalue of the s
ing matrix derived from this RGE gives the critical expone
s. In Sec. IV, we also study asymptotic behavior of t
running coupling constants in a massless phase and ex
the well known formula for a logarithmic finite-size corre
tion to the case of multiple running coupling constants.
Sec. V, we exhibit several nontrivial examples inspired
antiferromagnetic quantum spin chains. Finally, we give
summary and discussions in Sec. VI.

II. RGE FOR RGE

A. Formalism

Let us begin with the RGE for a given set ofn marginal
operators

dg

dt
5V~g!, ~2!

whereg5(g1 , . . . ,gn) is a set of coupling parameters an
t5 log l with l being a length scale parameter. Since the
erators are all marginal, the right-hand side is expanded

Vk~g!5(
i j

Ck
i j gigj1O~g3!, ~3!

whereCk
i j is proportional to the operator product coefficien

of the operators. First we neglect the higher-order ter
O(g3), and later we discuss the irrelevance of the neglec
terms.

In general, we find several critical surfaces where the
flow is absorbed into the origin. A phase transition occur
the initial coupling constants cross one of the critical s
faces. These critical surfaces divide the coupling param
space into several regions which are phases. In the next
tion, we consider one massive phase surrounded by a s
critical surfaces, where there are several marginally relev
coupling parameters. In this region, we have a finite corre
tion length, which becomes larger as the coupling param
approaches the critical surface.

We are going to study the long-distance asymptotic
havior of solutions for the RGE~2!, which is generally non-
integrable. To this end, let us introduce the RG method
plained in the Introduction. We define a renormalizatio
group transformation on ann21-dimensional sphere tha
forms a set of initial values. We denote the solutiong of Eq.
~2! with the initial conditiona05(a01, . . . ,a0n) as
al
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g~ t,a0!, ~4!

namely,g(0,a0)5a0. The functionetg(ett,a0) is a solution
of the RGE~2! as well, because of its scale invariance. LeS
be then21-dimensional sphere whose center is at the ori
with radiusua0u[a0. We define a new renormalization-grou
transformationRt :S→S as follows:

Rta0[etg„s~t!,a0…[a~t!. ~5!

Note thatRt has a semigroup property:

Rt11t2
5Rt2

+Rt1
. ~6!

The meaning ofRt is the following: first, chooset. Then
move a0 along the solutiong(t,a0) during the times(t).
Here s(t) is determined by the conditiong„s(t),a0…e

tPS.
See Fig. 1.

Next let us derive the beta function forRt . Noting that
V(g) is quadratic, we have

da

dt
5a1etV„g~s,a0!…

ds

dt

5a1e2tV~a!
ds

dt
. ~7!

The length-preserving condition

a•
da

dt
50 ~8!

leads to the following differential equation fors(t):

ds

dt
52

eta0
2

a•V~a!
, ~9!

with the initial conditions(0)50. Inserting Eq.~9! into Eq.
~7!, we obtain the beta function forRt :

b i~a![
dai

dt
5

aia•V~a!2Vi~a!a0
2

a•V~a!
. ~10!

Note thatb can be written as

FIG. 1. Illustration ofRt and theb function defined in Eq.~10!.
For simplicity, we taken52. The dashed line represents the tang
space ata(t)PS.
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b~a!52
a0

2

a•V~a!
P~a!V~a!, ~11!

whereP is the n3n matrix that projectsV„a(t)… onto the
tangent space ata(t)PS:

Pi j ~a![d i j 2
aiaj

a0
2

. ~12!

For later use, we derive a polar-coordinate representa
of the new RGE. Employing polar coordinates,aPS is ex-
pressed as

a5S a0 )
a51

n21

sinua ,a0 cosu1 )
a52

n21

sinua ,

a0 cosu2 )
a53

n21

sinua , . . . ,a0 cosun21D . ~13!

Since $]a/]ua%1<a<n21 are orthogonal to each other, w
can make the basis$ẽa%a orthonormal on the tangent space
aPS by an appropriate rescaling:

ẽa[ f a~a!21
]a

]ua
, f a~a![U ]a

]ua
U. ~14!

Then,

b̃a[b•ẽa5
da

dt
•ẽa5 f a~a!

dua

dt
, ~15!

which leads to the RGE in polar coordinates

dua

dt
5@ f a~a!#21b̃a~a!. ~16!

Returning to the coordinate-free representation Eq.~11!,
let us find a fixed point of the new RGE~10!. The nature of
our RGE near the fixed point determines the universal
havior of the infinite-order phase transition, as in the or
nary RGE for a finite-order one. Near a fixed point,a(t)
moves more slowly as its trajectory tends toward a criti
surface. This implies that the timea(t) spent in a neighbor-
hood of the fixed point is a singular function of the initi
conditiona0. This singularity can occur only at fixed poin
of the new RGE, which allows us to analyze its singu
behavior by a linearization near the fixed points.

From Eq.~11!, one finds thata is definitely a fixed point
if P(a)V(a)50 anda•V(a)Þ0. In this case, sinceV(ka) is
parallel toa for all real numbersk, a is on a straight flow line
of the original RGE~2!. Straight flow lines are put into two
classes. If an arbitrary pointa on a straight flow line satisfie
a•V(a),0, it is said to be anincoming straight flow line
becausea is carried toward the origin in time evolution. O
the other hand, ifa•V(a).0 for all a on a straight flow line,
it is called anoutgoing straight flow line. If a fixed pointa of
Eq. ~10! is on an incoming straight flow line,2a is a fixed
point on an outgoing straight flow line.

What happens ifP(a)V(a)5a•V(a)50? In this case,
V(a) itself vanishes. It means thata is a fixed point of the
n

t

-
-

l

r

original RGE~2!. Moreover, sinceV is homogeneous,ka is
also a fixed point for allkPR. Namely, the original RGE~2!
has a fixed line in this case. If the original RGE~2! has this
fixed line, a point on the fixed line has a nonvanishing sc
ing matrix even though the coupling constants are all m
ginal at the trivial fixed pointg50. Therefore, we can di-
rectly analyze the original RGE near a point on the fixed l
and can show that the phase transition generally become
finite order in this case.

Here, we offer a couple of remarks on the global nature
the new RG transformationRt defined by Eq.~5!. First,
there could be a turning pointḡ where V(ḡ)•ḡ50 with
V(ḡ)Þ0. Let

ln
a0

uḡu
[t̄. ~17!

Although Eqs.~9! and ~10! cannot be defined att5 t̄, it is
obvious in a geometric sense thata( t̄) and s( t̄) are well
defined. For example, in Fig. 2,a( t̄)5et̄ḡ ands( t̄) are de-
termined as the definite timeg(t,a0) spent during the journey
from a0 to ḡ.

Second, ifg(t,a0) has turning points,a(t) and s(t) be-
come multivalued with respect tot. For example, in Fig. 2,
g(t,a0) has a turning point atḡ. Suppose thatug(1)u5ug(2)u
5b and chooset5 ln a/b[t0. ThenRt0

a0 has two images,

et0g(1) andet0g(2). In this case we distinguish the images
a(1)(t0) and a(2)(t0). Similarly, s(t0) also has the same
multiplicity, which is distinguished in a similar way. In Fig
2, the image ofRt starting ata0 reaches a branch pointet̄ḡ.
We denote the solution froma0 to et̄ḡ by a(1)(t). The re-
maining part is calleda(2)(t). Both a(1)(t) and a(2)(t) are
absorbed into the branch pointḡet̄, which indicates the fact
that ḡ gives a minimum distance from the origin. If a turnin
point corresponds to a maximum distance, the two soluti
will escape from the branch point.

FIG. 2. An example in the case of a flow having a turning poi
Here we taken53. The gray lines represent solutions of the orig
nal RGE~2!, while black ones onS represent our RGE~10!. Here
a* (a8* ) on the incoming~outgoing! straight flow line is a fixed
point of our RGE.
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B. Example — the two-dimensional classicalXY model

Here we exhibit our RGE for the two-dimensional~2D!
classicalXY model as an illustrative example. The origin
RGE for theXY model is given by@10#

S dg1

dt

dg2

dt

D 5V~g![S 2g2
2

2g1g2
D , ~18!

with g2>0. Let us first look at the phase structure from E
~18!. See Fig. 3~a!.

The RGE~18! has two straight flow linesg16g250 and
one fixed lineg250. It is well known that each point on th
fixed line corresponds to the theory of a 2D massless
boson that is parametrized by a compactification radius
the boson field@2#. The shaded region in Fig. 3~a! is a mass-
less phase, since flow in this region is finally absorbed int
point on theg250 fixed line. The incoming straight flow
line, g12g250, with g2>0, forms the phase boundary. A
an initial coupling approaches the phase boundary from
massive phase, the correlation lengthj becomes divergent
~The correlation length also diverges when the initial co
pling constants tend toward a fixed point ong250 with g1
,0. However, the scaling matrix at this point does not va
ish and the ordinary finite-order phase transition takes pla
Since our interest is focused on an infinite-order phase t
sition, we do not consider that case here.!

Now we turn to the new RGE for theXY model, which is
given by Eqs.~10! and ~18! with the conditiona1

21a2
25a0

2

(a2>0). It is explicitly represented as

S da1

dt

da2

dt

D 5S 1

2a1
~a1

22a2
2!

1

2a2
~a2

22a1
2!
D ~19!

in Cartesian coordinates. Alternatively, using polar coor
natesa5(a0 sinu, a0 cosu) (2p/2<u<p/2), the RGE be-
comes

du

dt
52cot 2u, ~20!

owing to Eq.~16!.
Next we find fixed points of our new RGE. Solving

FIG. 3. ~a! Flow generated by the original RGE~18! of the XY
model. ~b! Flow of our RGE~10! with Eq. ~18!. Fixed points are
denoted by the black circles. Our RGE is not defined at the w
circles, which correspond to a fixed line or turning points
Fig. 3~a!.
.
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P~a!V~a!5
1

a0
2 S a2

2~a1
22a2

2!

2a1a2~a1
22a2

2!
D 50, ~21!

we have a5(6a0 /A2,a0 /A2),(6a0 ,0). Evaluating
V(a)•a at those points, it turns out that (a0 /A2,a0 /A2) is
on an incoming straight flow line while (a0 /A2,2a0 /A2) is
on an outgoing straight flow line. The remaining point
(6a0 ,0) are found to be on a fixed line. Note thatV(a)
Þ0 andV(a)•a50 whena5(0,a0). This means that (0,a0)
corresponds to turning points on trajectories generated by
original RGE. The flow of our RGE cannot be defined at t
points (0,a0) and (6a0 ,0). Since the example is a simpl
two-parameter system, we can understand qualitative asp
of the global flow in our RGE. See Fig. 3~b!.

In the last part of the next section, we will continue th
analysis of this model and derives from the b function in
Eq. ~19!. Before doing that, we need to have a representa
of the correlation length in terms of our RGE.

III. CRITICAL EXPONENT OF THE CORRELATION
LENGTH IN A MASSIVE PHASE

In this section, we explain how to evaluate the critic
exponents of the correlation length in a massive phase fro
the beta function~10!.

We first define a correlation lengthj(a0) by the following
formula:

ug„ln j~a0!,a0…u51. ~22!

Namely, lnj(a0) is the timeg(t,a0) spent in the perturbative
region. We note thatj(a0) defined above changes as

etj„g~ t,a0!…5j~a0! ~23!

under the original RG transformation, which should be s
isfied by an intrinsic length scale of the model. The diffe
ential form of this equation,

(
i

Vi~g!
]j~g!

]gi
1j~g!50,

is obtained by Eq.~2!, which is well known as an equatio
for an invariant length scalej(g). Further, Eq.~22! is a natu-
ral generalization of the correlation length used in the
classicalXY model.

We consider the case where the running coupling c
stants are in the perturbative regionug(t,a0)u,1. In this sec-
tion, we study in particular the long-time asymptotics of
flow that approaches the origin once and then leaves for
nonperturbative regionug(t,a0)u>1, as the flow in the region
g2>ug1u in theXY model. Generally, a quadratic differentia
equation such as Eq.~2! admits a flow qualitatively different
from that investigated here. In Sec. VI, we discuss such
exceptional case.

Next, let us representj(a0) by the solution of our RGE
~10!. DefinetR by e2tRua0u51. From the definition ofs(t),
we obtain

ln j~a0!5s~tR!5E
0

tR
dt

ds

dt
. ~24!

e
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Using the differential equation~9! on the right-hand side, we
obtain the integral representation forj(a0). Since a flow
treated in this section has a turning point as shown in Fig
the correlation length is represented via

ln j~a0!52E
0

t̄
dt

eta2

a(1)~t!•V„a(1)~t!…

2E
t̄

tR
dt

eta2

a(2)~t!•V„a(2)~t!…
. ~25!

Employing the integral representation, we argue that
leading term ofj is given by

ln j~a0!.et̄ ~26!

if t̄ in Eq. ~17! is sufficiently large. Even though the integr
near the turning point seems to diverge, it is only apparen
discussed in the preceding section@17#. The first term on the
right-hand side of Eq.~25! diverges due toet in the inte-
grand whent̄ goes to infinity. The second term contributes
the correlation length with the same order as the first te
Hence, we can evaluatej(a0) by Eq. ~26!, which translates
singular behavior ofj(a0) into that of t̄.

Next, we evaluate the divergentt̄ by using the polar-
coordinate expression Eq.~16! of our RGE. It is obvious that
t̄ diverges if the initial coupling constanta0 is on an incom-
ing straight flow line. It implies thatt̄ grows whena(t)
passes near a fixed pointa* on the incoming straight flow
line.

Suppose thata(t) goes through a neighborhoodU of a* ,
as shown in Fig. 4.

The scaling matrix of the beta function~16! does not, in
general, vanish at the fixed point and then theb function can
be linearized inU. That is,

@ f a~a!#21b̃a~a!. (
g51

n21

@ f a~a* !#21
]b̃a

]ug
~a* !dug

[ (
g51

n21

Aag~a* !dug , ~27!

wheredug[ug2ug* with $ug* %g representing the fixed poin

a* . The scaling matrixAag(a* ) describes the larget̄ behav-
ior becausea(t) spends a long time inU. If the scaling

FIG. 4. Flow in our RGE~10! near the fixed pointa* on an
incoming straight flow line. The dashed line represents the o
parameter family of the initial valuea0(T).
2,

e

as

.

matrix is diagonalized with eigenvaluesba by a new coordi-
nate$ua8 %a , our RGE becomes

d

dt
dua85badua8 . ~28!

The solution is

dua8 ~t!5dua8 ~t0!eba(t2t0). ~29!

We takeU as the (n21)-dimensional cubic box, whose sid
is 2e and whose center isa* . If the scaling matrix has the
unique relevant modeu18 , a(t) spends time

1

b1
lnU e

du18~t0!
U ~30!

in U. Here we have supposed thata(t) reachesU at t5t0.
Now we vary the initial valuea0 by one parameterT and
assume thata0(T) intersects a critical surface transversally
T5Tc . See Fig. 4.

As the initial valuea0(T) tends toward the critical sur
face, udu18(t0)u gets small. It implies thatdu18(t0) is ex-
panded as

du18~t0!5const3~T2Tc!1O@~T2Tc!
2#. ~31!

Sincea(t) spends a finite time outside ofU, the divergent
behavior ofj(a0) is determined by Eqs.~30! and~31!. Thus
we get

ln j~a0!.et̄.uT2Tcu1/b1, ~32!

which means

s5
1

b1
. ~33!

This quantity does not depend strongly on the choice
a0(T), so thats is a universal quantity in this sense.

It is quite useful to find a relationship between the scal
matrix A(a* ) in Eq. ~27! and then3n matrix

Bi j ~a* ![
]b i

]aj
~a* ! ~34!

for practical computing of the eigenvalues$ba%a . In the Ap-
pendix, we will show that

L~B!5L~A!ø$0%, ~35!

where L(M ) is the set of eigenvalues of a matrixM. It
should be noted thatB(a* )5B(2a* ) sinceb(a) is an odd
function. This means that the scaling matrixA(a* ) has the
same eigenvalues asA(2a* ).

Now we deal with the 2D classicalXY model again and
show how to derives by our method. The original RGE is
given by Eq.~18!. We saw in the preceding section thata*
5(a0 /A2,a0 /A2) is a fixed point on the incoming straigh
flow line. The matrixB defined by Eq.~34! is

e-
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B~a* !5
]b i

]aj
~a* !5S 1 21

21 1D;S 0 0

0 2D , ~36!

i.e., the scaling matrixA(a* ) has the eigenvalue 2, accordin
to Eq.~35!. Alternatively,A(a* ) is directly computed in this
case. From Eq.~20! we get

A~a* !52
1

2

d

du U
u5p/4

cot 2u52, ~37!

as expected.
Following our result, Eq.~33!, we get

s51/2, ~38!

which is well known as the BKT universality. Originally it i
obtained integrating the nonlinear RGE~18! explicitly @10#.
By contrast, according to our approach we can reach
same result in an algebraic way. As we will see in Sec. V
can provides even in the case where an original RGE~2! is
not integrable.

In the above example, the fixed pointa* has a unique
relevant mode, so that we can apply the result~33!. If there
are multiple relevant modes in the scaling matrix, we c
observe other relevant exponents 1/b2 ,1/b3 , . . . .0 in an
appropriate fine tuning of the initial parameters.

Finally, we discuss the irrelevance of the higher-ord
terms in the original RGE~2!. Here, we assume that w
acquire no extra fixed points by taking into account high
order terms. If we have higher-order terms, the RG tra
formed coupling witht obeys a different equation because
their scale-breaking nature. The scaled couplingg8(t)
5etg(ett,a0) obeys

dg8

dt
5V~g8!1O~e2tg83!. ~39!

Note that the higher-order term becomes smaller and
RGE takes the scale-invariant form asymptotically. The
fore, higher-order terms are irrelevant in determining
critical exponent.

IV. LOGARITHMIC DEPENDENCE OF MULTIPLE
MARGINALLY IRRELEVANT COUPLING CONSTANTS

So far, we have studied solutions of RGE~2! in a massive
phase. Our method is also applicable to studying asympt
behavior of a solution in a massless phase. In this section
study the logarithmic dependence of the multiple runn
coupling constants in a massless phase.

It is important to clarify finite-size corrections in a syste
with marginally irrelevant operators. For example, a nume
cal simulation in a spin system can calculate energy lev
only for small degrees of freedom. A theoretical formula f
the finite-size correction is useful to extrapolate numeri
data to those in the infinite system. If the system can
described in a critical theory with marginally irrelevant pe
turbations, physical quantities acquire logarithmic finite-s
corrections. Here we are interested in a system with a fi
volumeLD described by a theory with marginally irreleva
coupling constantsg, whereD is the space dimension. Con
e
it

n

r

-
-

f

e
-
e

tic
e

g

i-
ls
r
l
e

e
te

sider the situation where we have a critical theory withg
50 which describes the system with an infinite volume.
the system with a finite volumeLD, we can calculate physi
cal quantities with a finite-size correction in the critic
theory with a small perturbation of the couplingg obeying
RGE~2!. If we have an initial couplinga0 at a lattice spacing
1, the running coupling at the scaleL becomesg(ln L,a0),
whereg(`,a0)50. In the case of a single marginally irre
evant coupling constantg, the originalb function is given by

V~g!5Cg21O~g3!,

whereC is a universal constant in the sense that it is ind
pendent of an initial value. The running coupling consta
with an initial conditiona0 has the following solution:

ln L5E
a0

g(ln L,a0) dg

V~g!
.

1

Cg~ ln L,a0!
2

1

Ca0
. ~40!

In this solution, we have a well known universal express
@11#

g~ ln L,a0!5
1

C

1

ln L
1OS 1

~ ln L !2
,
ln ln L

~ ln L !2D . ~41!

The leading term is independent of the initial couplinga0,
and therefore this formula is useful for fitting numerical
experimental data of the system with a finite size. For
ample, in one-dimensional quantum spin systems with m
ginally irrelevant perturbations, logarithmic finite-size co
rections to the ground state energy

DE052
p

6L Fc1
A

~ ln L !3
1OS ln ln L

~ ln L !4
,

1

~ ln L !4D G
are calculated from this formula~41! @11,12#, wherec is the
central charge andA is determined fromC. Sincec andA are
universal constants, we can comparec and A to numerical
~experimental! data and obtain a clue as to whether a fie
theory that derives Eq.~41! is or is not truly effective. There-
fore, it is important to derive a formula corresponding to E
~41! where there are multiple marginally irrelevant co
plings. In this section, we shall show that this universal n
ture holds in this case as well.

As we mentioned above, we examine the case where
the coupling constants are marginally irrelevant, so that fl
of Eq. ~2! is absorbed into the origin. In this case, there a
no turning points on the flow, which implies that the tran
formationRta0 defined in Eq.~5! is single-valued with re-
spect tot. Therefore, we can write down a formula similar
Eq. ~25! as

ln L52E
0

t

dt8
a0

2et8

a~t8!•V„a~t8!…
. ~42!

The running coupling constantg(ln L,a0) is obtained by

g~ ln L,a0!5e2ta~t!. ~43!
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In order to derive the logarithmic dependence ofg(ln L,a0),
we first solve Eq.~42! for t when L is sufficiently large.
Then we apply the result to Eq.~43!.

As we have seen in the preceding section, when we taL
sufficiently large, the contribution from a neighborhoodU of
a fixed pointa* on an incoming straight flow line dominate
in the integration of Eq.~42!, which can be evaluated from
the linearized new RGE inU. Suppose thata(t) entersU at
t5t0. Equation~42! becomes

ln L.2E
t0

t

dt8
a0

2et8

a~t8!•V„a~t8!…
~44!

for largeL.
Writing

a~t!5a* 1da~t!, ~45!

da(t) in the polar-coordinate representation obeys the
earized RGE~28! in U. Its solution has the following
asymptotic form for larget:

da~t!. (
a51

n21
]a

]ua8
dua8 ~t!.

]a

]u18
du18~t0!eb1(t2t0), ~46!

whereb1,0 is the maximal eigenvalue of the scaling mat
A(a* ) defined in Eq.~27!. We expand the integrand in Eq
~44! as

a0
2et8

a~t!•V„a~t!…

5
a0

2et8

a* •V~a* !
F12

~da•¹ua5a* !a* •V~a!

a* •V~a* !
1O~da2!G ,

~47!

and calculate the right-hand side of Eq.~44!. First we com-
pute the leading-order contribution. The leading integrat
is easily performed as follows:

ln L.2E
t0

t

dt8
a0

2et8

a* •V~a* !

52
a0

2

a* •V~a* !
~et2et0!.2

a0
2

a* •V~a* !
et. ~48!

Sincea•V(a), which is a cubic function of$ak%, is negative
at a* , we can write

a* •V~a* !52Ca0
3 , ~49!

whereC is a positive constant defined by

C[2e* •V~e* ! ~50!

with e* [a* /a0. From Eqs.~43!, ~48!, and ~49!, we get, in
the leading order,

g~ ln L,a0!5e2ta* .
1

C ln L
e* . ~51!
-

n

Since e* and C are completely determined by the explic
form of V, the result in the leading order is universal.

Next, let us go to the next-to-leading term. After evalu
ing the next-to-leading term in the integral~44! with the help
of Eqs. ~46! and ~47!, we representet in 1/lnL expansion.
The calculation is easily performed and finally we obtain

g~ ln L,a0!55
1

C ln L
e* 1

B

~ ln L !12b1

]a

]u18
~21,b1,0!

1

C ln L
e* 1

B8 ln ln L

~ ln L !2

]a

]u18
~b1521!

1

C ln L
e* 1

B9

~ ln L !2
e* ~b1,21!,

~52!

where the constantsB, B8, and B9 depend on the initial
condition, in contrast to the leading term. The result impl
that, if 21<b1,0, we have to take into account the no
universal nature of the subleading correction, even tho
O(g3) corrections in the original renormalization-grou
equations give universal coefficients to this subleading te

V. EXAMPLES

Here, we consider the level-1SU(N) Wess-Zumino-
Witten ~WZW! model in two dimensions as a critical theo
@2#. This model has traceless chiral currentsJab(z) and
J̄ab( z̄) (a,b51, . . . ,N) satisfying the following operator
product expansion~OPE!:

Jab~z!Jcd~0!;
daddbc

z2
1

1

z
@dbcJ

ad~z!2dadJ
bc~z!#,

J̄ab~ z̄!Jcd~0!;
daddbc

z̄2
1

1

z̄
@dbcJ̄

ad~ z̄!2dadJ̄
bc~ z̄!#,

Jab~z!J̄cd~0!;0, ~53!

where; stands for equality up to regular terms. Using the
currents, we can construct (N221)2 marginal operators
Jab(z) J̄cd( z̄). In this section, we study models perturbed
some of the marginal operators which are inspired by a qu
tum spin chain@12,3#.

A. Two-parameter system

First, we consider a simple two-parameter system that
cludes the BKT universality as the special caseN52. We
define theSU(N) symmetric marginal operatorf1(z,z̄) and
the symmetry breaking onef2(z,z̄),

f1~z,z̄!5 (
a51

N

(
b51

N

Jab~z!J̄ba~ z̄!,

f2~z,z̄!5 (
a51

N

(
b51

N

Jab~z!J̄ab~ z̄!, ~54!
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which satisfy the following closed OPE:

f1~z,z̄!f1~0,0!;
22N

uzu2
f1~0,0!,

f1~z,z̄!f2~0,0!;
22

uzu2
@f1~0,0!2f2~0,0!#,

f2~z,z̄!f2~0,0!;
2N

uzu2
f2~0,0! ~55!

by Eq. ~53!. The action integralA of the perturbed theory is

A5AWZW1(
i 51

2

giE d2z

2p
f i~z,z̄!. ~56!

The OPE formula Eq.~55! yields the following two-
parameter RGE:

dg1

dt
5V1~g!5g1~Ng112g2!,

dg2

dt
5V2~g!52g2~2g11Ng2!. ~57!

In the case ofN52, the RGE reduces to the same form
the RGE of theXY model with an appropriate linear tran
formation, which was extensively studied in Secs. II and
Here we restrict ourselves to the case ofN>3.

The beta function in our RGE~10! for Eq. ~57! is

b1~a!5a12
a1~Na112a2!a0

2

a1
2~Na112a2!2a2

2~2a11Na2!
,

b2~a!5a22
2a2~2a11Na2!a0

2

a1
2~Na112a2!2a2

2~2a11Na2!
. ~58!

Solving b(a)50, we have the following six fixed points
6(a0 ,0), 6(0,a0), and 6(a0 /A2,2a0 /A2). Evaluating
a•V(a) at those points, we find that there are the three fix
points on incoming straight flow lines, (2a0 ,0)
[c1 , (0,a0)[c2, and (2a0 /A2,a0 /A2)[c3. The matrix
B(a) in Eq. ~34! at those points becomes

B~c1!5S 0 0

0
21N

N
D , B~c2!5S 21N

N
0

0 0
D ,

B~c3!5
21N

422N S 1 1

1 1D;S 0 0

0
21N

22N
D , ~59!

which meansc1 andc2 are unstable fixed points whilec3 is
stable for allN>3.

Divergence of the correlation length is governed by
unstable fixed points and, according to the formula Eq.~33!,
s

.

d

e

s5
N

N12
, ~60!

which is identical to that obtained by the explicit solution
the differential equation in Ref.@3#. Note that the result Eq
~60! is also valid in the case ofN52, although the scaling
matrix cannot be defined atc3 : c3 corresponds to a fixed line
of the original RGE~57! if N52.

Any theory ofc51 CFT with marginal perturbations ha
the critical exponents51/2 ors51, as is well known@15#.
This is because the level-1SU(2) WZW theory is the maxi-
mally symmetric theory inc51 CFT and because it give
the most general theory with marginal perturbation inc51
CFT @16#. The most general theory with marginal perturb
tions describes a quantumXYZ chain with spin 1/2. The
infinite-order phase transition occurs at a line of theXXX
chain. This corresponds toN52 in our analysis. In the cas
of c.1 CFT with marginal perturbation, however, we sho
some new universality classes with nontrivial critical exp
nentss Eq. ~60! for N.2. For example, the transition in th
case ofN53 describes the gapless Haldane gap phase t
sition with the exponents53/5 from the SU(3) symmetric
line g250 in an isotropic spin-1 chain@3#.

The result Eq.~59! is also useful when we figure out th
qualitative picture of the flow in the original RGE~57!. For
this purpose, we need to know a branch point, which co
sponds to a turning point on a flow in Eq.~57!, by solving
a•V(a)50. The solution is6(a0 /A2,a0 /A2) for all N>3.
A flow in our RGE changes its direction at these points,
we depicted in Fig. 2. Combining the result Eq.~59! and the
fact that the scaling matrix at2ci ( i 51,2,3) has the same
eigenvalues as atci , we get the global flow of our RGE, a
in Fig. 5~a!. It derives qualitative features of the RG flow i
Eq. ~57!, which are drawn in gray curves in Fig. 5~b!. We
notice that the regiong1^0, g2& is a massless phase, whe
solutions in the original RGE are all absorbed into the orig
along the incoming straight flow lineg11g250 (g1,0).
The incoming straight flow lines passingc1 or c2 form the
phase boundary.

Next, we discuss logarithmic dependence of the runn
coupling constants in the massless phase. Let us introd
new variables (X,Y)[(g12g2 ,2g12g2). The original
RGE has the incoming straight flow lineY50 (X,0) on
which c3 is situated. According to our result Eq.~52!, the

FIG. 5. ~a! Flow in our RGE. The black circles represent fixe
points while the white ones represent branch points correspon
to turning points on the flow in Eq.~57!. ~b! Illustration of the flow
in Eq. ~57! derived by our RGE, which is drawn in gray curves.
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running coupling constantX(ln L,a0) has the leading loga
rithmic dependence 1/lnL, whose coefficient is universal. I
contrast,Y(ln L,a0) has the dependence (lnL)211b with a
nonuniversal coefficient, whereb[(N12)/(22N),21
for N>3. Hence the 1/(lnL)2 contribution that belongs to
the next-to-leading term inX(lnL,a0) gives subleading con
tribution. This implies that, if we can determineg3 terms in
the original RGE~57!, universal lnlnL/( lnL)2 dependences
can be obtained in this example. We remark that the lo
rithmic dependence ofY(lnL,a0) is consistent with the resul
from the explicit solution@3#.

B. Three-parameter system

Here, we consider a nontrivial three-parameter system
SU~2!-invariant marginal perturbation of the level-1 SU~4!
WZW model whose RGE becomes nonintegrable. T
model may describe anS53/2 quantum spin chain aroun
the SU(4) symmetric Uimin-Lai-Sutherland model@13,14#
with some SU~2! invariant perturbation. The SU~2! transfor-
mation is generated by

TrE dz J~z!L1TrE d z̄J̄~ z̄!L, ~61!

whereL5(L1,L2,L3) is the spin matrix in the spin-3/2 rep
resentation. Marginal operators invariant under the SU~2!
transformation are constructed as follows:

f j~z,z̄![Tr (
m52 j

j

~21!mJ~z!Tj ,mJ̄~ z̄!Tj ,2m , j 50,1,2,3,

~62!

where Tj ,m satisfies@L2,Tj ,m#5 j ( j 11)Tj ,m and @L3,Tj ,m#
5mTj ,m . Using the tracelessness property of the curre
we get

(
j 50

3

f j~z,z̄!50, ~63!

which indicates that there are three independent marg
operators inf0, . . . ,f3. Here we consider the perturbatio

(
j 50

2

giE d2z

2p
f j~z,z̄!. ~64!

Employing the OPE~53! and the normalization condition
Tr tTj ,mTj 8,m85d j j 8dmm8 , we find the following operator
product expansions:
a-

n

s

s,

al

f0~z,z̄!f0~0,0!;
2

uzu2
f0~0,0!,

f0~z,z̄!f1~0,0!

;
1

uzu2
S 2

3

5
f0~0,0!2

1

2
f1~0,0!2

3

10
f2~0,0! D ,

f0~z,z̄!f2~0,0!;
1

uzu2
S 2

1

2
f0~0,0!1

1

2
f2~0,0! D ,

f1~z,z̄!f1~0,0!

;
1

uzu2
S 2

6

25
f0~0,0!1

11

5
f1~0,0!1

3

5
f2~0,0! D ,

f1~z,z̄!f2~0,0!

;
1

uzu2
S 2

9

10
f0~0,0!2

1

2
f1~0,0!2

6

5
f2~0,0! D ,

f2~z,z̄!f2~0,0!;
1

uzu2
„3f0~0,0!13f2~0,0!…. ~65!

The RGE derived from the OPE is

dg0

dt
5V0~g!52g0

21
3g0g1

5
13

g1
2

25
1

g0g2

2
1

9g1g2

10
2

3g2
2

2
,

dg1

dt
5V1~g!5

g0g1

2
2

11g1
2

10
1

g1g2

2
,

dg2

dt
5V2~g!5

3g0g1

10
2

3g1
2

10
2

g0g2

2
1

6g1g2

5
2

3g2
2

2
.

~66!

We find that our RGE for Eq.~66! has the following seven
fixed points on incoming straight flow lines:

c15~a0 ,0,0!, c25S a0

A2
,0,

a0

A2
D , c35S 3a0

A10
,0,

a0

A10
D ,

c45S 3a0A 2

35
,a0A 5

14
,
3a0

A70
D ,

c55S 23a0

5A26
,
5a0

A26
,
2a0

5
A 2

13D ,
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c65
a0

A2510571747A205

A5678

3S ~6239A5185A41!

180
,
~613A515A41!

12
,7

1

2A5
D .

The corresponding eigenvalues of the scaling matrix at e
fixed point are calculated as

c1 ; S 3

2
,
1

2D , c2 ; S 3

2
,
1

2D , c3 ; S 5

3
,
21

3 D ,

c4 ; ~25,211!, c5 ; S 55

27
,
41

27D ,

c6 ; S 241A631

8
,
242A631

8 D
5~2.63996417 . . . ,23.63996417 . . . !.

Namely, they are classified into the twice-unstable fix
pointsc1 ,c2 ,c5, the once-unstable fixed pointsc3 ,c6, and the
stable fixed pointc4. The critical exponents determined b
the once-unstable fixed pointsc3 andc6 are, respectively,

s5
3

5
,

8

~241A631!
, ~67!

which must be observed most likely in this model. In ord
to detect other exponents, fine tuning of the initial coupli
parameters to the twice-unstable fixed points is necessar
in the multicritical behavior of ordinary second-order pha
transitions.

Logarithmic dependence of the running coupling co
stants is controlled by the stable fixed pointc4. Since the
largest eigenvalue at the fixed point is less than21, the
sub-leading contribution is 1/(lnL)2 in this case.

It is helpful to study our RGE for Eq.~66! numerically in
order to better understand our results. Figure 6 exhibits
seven fixed pointsc1 , . . . ,c6 in polar coordinates,

a5a0~sinu sinf,sinu cosf,cosu!, ~68!

with 2p/2<f,3p/2, 0<u,p.
The curve in Fig. 6 represents the equationa•V(a)50,

which corresponds to the set of branch points of the
transformationRt . All fixed points belong to the region
$aua•V(a),0% because they are on incoming straight flo
lines in the original RGE.

FIG. 6. Seven fixed pointsc1 , . . . ,c6 .
ch

d

r
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e

Figure 7 shows the vector field (df/dt,du/dt) given by
Eq. ~16! near the fixed points. From this figure, we find th
most points in this region go to the outside of the region or
the fixed pointc4.

The destination of a trajectory toward the outside of t
region is a point on the curvea•V(a)50. This implies that a
flow of the original RGE~66! corresponding to this flow on
S approaches the origin once and escapes from it. Nam
those points belong to a massive phase. On the other ha
flow that terminates at the stable fixed pointc4 corresponds
to a flow of the original RGE absorbed into the origin alo
the incoming straight flow line. The set of those points mo
ing toward the fixed pointc4 is in a massless phase.

In general, we have two cases corresponding to mas
and massless phases described above. However, ther
exceptional points that lie on the solutions starting at one
the twice-unstable fixed pointsc1 ,c2 ,c5 and arriving at one
of the once-unstable fixed pointsc3 ,c6 . These exceptiona
solutions correspond to critical surfaces that give the ph
boundary determined in the original RGE. More precise
the set of points on the exceptional trajectories is the in
section between a phase boundary determined by the orig
RGE and the sphereS. It should be noted that the phas
boundary in the coupling space$(g1 ,g2 ,g3)% forms a coni-
cal surface becauseV(g) is homogeneous.

Figure 8 depicts a flow numerically solved near the cr

FIG. 7. Vector field defined by the polar-coordinate represen
tion of our RGE for Eq.~66!. The black dots represent the fixe
points, which correspond to those in Fig. 6.

FIG. 8. Solutions numerically computed near the exceptio
ones.



t
up
d

e
q

g

o
ha
b
IV

e
a
in

ng
-
m

h

an

e
ne

a
av

un
l t
n
r

e
s
n

sa
rm
et

io
t
tia

w
th
en

d

om
se

q.
se
ur

es

s at
ere

out

in

3698 PRE 60CHIGAK ITOI AND HISAMITSU MUKAIDA
cal surfaces. Using the numerical results, Figs. 7 and 8, le
consider divergent behavior of the correlation length. S
pose that an initial valuea0 changes toward the phase boun
ary betweenc1 andc2 such as the dashed lineA. As a0 tends
to the phase boundary, the flow starting ata0 passes near th
fixed point c3 and spends a long time there. The result E
~67! indicates that the critical exponents detected in this
case is 3/5. Similarly, ifa0 varies along lines such asB or C,
one observess58/(241A631), since the solution startin
at a0 goes through a neighborhood of the fixed pointsc1 or
c2 .

Finally, we comment on the logarithmic dependence
the coupling constants in this example. Figure 7 implies t
a general massless flow is controlled by the twice-sta
fixed pointc4. The universal features considered in Sec.
are valid if the initial valuea0 is sufficiently far from the
phase boundary. However, asa0 approaches the phas
boundary from a massless side, the solution is gradually
fected by the once-unstable fixed points. More profound
vestigation will be needed in this case.

VI. SUMMARY AND DISCUSSION

In this paper, we first showed an algebraic way of findi
the critical exponents in Eq.~1!, which was heretofore com
puted by integrating RGE explicitly. The procedure is su
marized as follows.

~i! Derive the RGE defined in Eq.~10! from the original
RGE ~2!.

~ii ! Find straight flow lines in the original RGE, whic
correspond to fixed points of our RGE.

~iii ! Compute the scaling matrix at a fixed point on
incoming straight flow line and diagonalize it.

~iv! If the scaling matrix has the unique relevant mod
the correlation length indicates singular behavior by o
parameter fine tuning and the exponents is equal to the
inverse of the relevant eigenvalue. If the scaling matrix h
multiple relevant modes, we can observe multicritical beh
ior.

Second, we derived the logarithmic dependence of r
ning coupling constants in a massless phase where al
coupling constants are marginally irrelevant. It was fou
that the coefficient of the leading logarithmic term is unive
sal in the sense that it does not depend on an initial valu
the running coupling constants, which is the same result a
the case of a single marginally irrelevant coupling consta
However, coefficients of subleading terms are nonuniver
They could disturb the universal nature of subleading te
that come from higher-loop corrections to the original b
function.

We obtain both results by applying the RG transformat
~5! to the original RGE~2!, which was inspired by the recen
developments of RG transformations to nonlinear differen
equations@6–8# .

It should be noted that our study is focused, when
derive the first result, on a flow that goes once toward
origin and then leaves for a nonperturbative region. In g
eral, the quadratic differential equation~2! with Eq. ~3! could
have a flow qualitatively different from those we considere
For example, we numerically find that the equation
us
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S dg1

dt

dg2

dt

D 5V~g![S g1~g11g2!

g2~qg11g2!
D ~69!

has a flow such as in Fig. 9 ifq.1.
Namely, the equation has solutions that first escape fr

the origin and then turn back to it. See Fig. 10. In this ca
we cannot directly apply the result Eq.~33!. Even in that
case, as we show in the following, the beta function in E
~10! is helpful for understanding a qualitative picture of the
solutions. In fact, we first notice that there are only fo
straight flow lines ong150 or on g250. Next let us com-
pute the scaling matrix in Eq.~27! at the fixed points
(6a0 ,0) and (0,6a0) of our RGE~10!. We find that it has
eigenvalues 12q at (6a0 ,0) and 0 at (0,6a0). If q.1,
solutions for the RGE near (6a0 ,0) is absorbed into the
fixed points as depicted in Fig. 10. The integral curve do
not change the direction at the other fixed points (0,6a0)
because the eigenvalue of the scaling matrix vanishe
those points. Therefore, by continuity, we conclude that th
must be at least two branch points onS. Moreover, the solu-
tion must escape from the branch points. As we pointed
in the last part of II A, it means that Eq.~69! has a flow that
first leaves from the origin and turns back to it, as depicted
Fig. 9.

FIG. 9. Flow in Eq.~69! with q52.

FIG. 10. Flow in our RGE for Eq.~69! with q52. The white
circles correspond to turning points.



-
en

a
e

o
i

to
k
th

m

s
o

f

he

ly

,

-

PRE 60 3699RENORMALIZATION GROUP FOR RENORMALIZATION- . . .
The study of the universality classification of infinite
order phase transitions is now in progress. In two dim
sions, it should contribute to the analysis of thec.1 CFT. In
higher than two dimensions, a nontrivial exponent in
infinite-order phase transition might be observed experim
tally in some phenomena.
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APPENDIX: RELATIONSHIP BETWEEN
THE EIGENVALUES OF A„a* … AND B„a* …

In this Appendix we prove Eq.~35!. The claim is that a
set of the eigenvalues ofB(a* ) in Cartesian coordinates i
equal to that ofA(a* ) in polar coordinates plus extra zer
eigenvalue.

To show that, we adda/a[ẽn to the basis$ẽa%1<a<n21

of the tangent space ata(t)PS. Then the set$ẽi%1< i<n be-
comes an orthonormal basis of then-dimensional space o
coupling constants. Consider then3n matrix

Ti j ~a![ f j~a!~ei ,ẽj !, ~A1!

where $ei%1< i<n is the orthonormal basis that defines t
Cartesian coordinates (g1 , . . . ,gn) and the bracket (x,y)
means the inner product. The functionf j (a) is given in Eq.
~14! for 1< j <n21. In addition,

f n~a![U]a

]aU51. ~A2!

Since (ei ,ẽj ) forms an orthogonal matrix, we immediate
have the inverse ofT as
E.

re
-

n
n-

r-
s

e
-

Tik
21~a!5 f i~a!21~ ẽi ,ek!. ~A3!

Now we examine the form of then3n matrix T21BT. As
the first step, let us computeT21B:

(
k51

n

Tik
21~a* !Bkl~a* !5 (

k51

n

f i~a* !21~ ẽi ,ek!
]bk

]al
~a* !

5 f i~a* !21
]

]al
~ ẽl ,b!

5 f i~a* !21
]b̃ i

]al
~a* !. ~A4!

Here we have usedb(a* )50 in the second equality. Next
according to Eq.~14!, we find thatTi j can be written as

Tl j 5S el ,
]a

]u j
D5

]al

]u j
~1< j <n21!. ~A5!

Using Eqs.~A4! and ~A5!, we get

(
1<k,l<n

Tik
21~a* !Bkl~a* !Tl j ~a* !

5 (
1<k,l<n

f j~a* !21
]b̃ i

]al
~a* !

]al

]u j
~a* !

5 f j~a* !21
]b̃ i

]u j
~a* ! ~A6!

for 1< i<n and 1< j <n21.
The result indicates thatT21BT has the following form:

~T21BT!~a* !5S A~a* ! *

0•••0 0D , ~A7!

which proves Eq.~35!. Note that the last row vanishes be
causeb̃n(a)5@b(a),ẽn#50 for all a.
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