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Renormalization group for renormalization-group equations toward
the universality classification of infinite-order phase transitions
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We derive a renormalization group to calculate the nontrivial critical exponent of the divergent correlation
length, thereby providing a universality classification of essential singularities in infinite-order phase transi-
tions. This method thus resolves the vanishing scaling matrix problem. The exponent is obtained from the
maximal eigenvalue of a scaling matrix in this renormalization group, as in the case of ordinary second-order
phase transitions. We exhibit several nontrivial universality classes in infinite-order transitions different from
the well known BerezinskiKosterlitz-Thouless transitionS1063-651X99)05010-7

PACS numbgs): 64.60.Ak, 05.70.Fh, 05.70.Jk, 11.10.Hi

I. INTRODUCTION types of models with infinite-order phase transitions includ-
ing the BKT type, the universality classification by this criti-
cal exponent still remains a challenging problem.

In this paper, we study the universal nature of the critical
exponentos in infinite-order phase transitions. We show that
the critical exponendr is determined from the operator prod-
Y uct coefficients of the marginal operators that cause the

E~expAlg—gd ), () infinite-order phase transition. It is shown that a marginally
irrelevant operator can also affect the value of the critical

with the critical exponentr=1/2 or 1. Inc=1 conformal exponento.
field theory (CFT) [2], there are infinitely many models  The critical exponent of the correlation length is extrac-
where infinite-order phase transitions can occur. Any one ofed from a long-distance asymptotic form of running cou-
them shows the same universality as the BKT transition. pling constants, whose leading term is determined by the

One observesr different from 1/2 or 1 in som&>1  motion of the coupling constants near a fixed point. In
CFTs[3-5]. Recently, a model of a quantum spin chain, an ordinary finite-order phase transition, we linearize the
whose long-distance behavior is described by the level-}enormalization-group equatiofRGE) around the fixed
SU(N) Wess-Zumino-Wittef WZW) model, was studied by point and can derive the exponent exactly. Namely, we can
Itoi and Kato[3]. They pointed out that an infinite-order show that the inverse of the exponent is equal to the maximal
phase transition with a critical exponeat=N/(N+2) oc-  ejgenvalue of the scaling matrix defined by the derivative of
curs by an SUY) symmetry-breaking marginal operator. In the beta function at the fixed point. One does not have to
the N=3 case, this corresponds to the gapless Haldane gaglve the differential equation exactly in order to obtain the
phase transition in a spin-1 isotropic antiferromagnet in onexact critical exponents in this case. In the infinite-order
dimension. In a problem of dislocation-mediated melting,phase transition however, the scaling matrix vanishes, since
some curious numbers were observed by Young, Nelson, anfle phase transition is driven only by marginal operators. So
Halperin[4]. They obtainedr=1/2 for a model on a square far, one has had to solve the differential equations explicitly
lattice, o=2/5 for a simplified model on a triangular lattice to obtain the critical exponent, although RGEs with multiple
and a nonalgebraic number=0.369 &. .. for ageneralized variables are generally nonintegrable due to their nonlinear-
model. In Ref[5], Bulgadaev studied topological phase tran-ity except for some fortunate cases such as the BKT transi-
sitions inc>1 CFT with non-Abelian symmetry, where non- tion. This difficulty is one of the reasons why the universality
Abelian vortices play an important role. They belong to spe-lassification of infinite-order phase transitions by the critical
cial classes of infinite-order phase transitions and severalxponentos in Eq. (1) has never been successfully done.
series ofo dependent on the symmetry of the system were In order to resolve this problem, we apply another
found. Though there have been several studies on differemeénormalization-groupRG) method developed in Refi6,7]

to studying the long-distance asymptotic behavior of the so-
lution of the original nonintegrable RGE. This RG method is
*On leave from Department of Physics, College of Science andtarting to be recognized as a general tool for asymptotic
Technology, Nihon University, Kanda Surugadai, Chiyoda-ku,analysis. Chen, Goldenfeld, and Odigintroduced the idea
Tokyo 101-8308, Japan. Electronic address: itoi@of RG to singular perturbation theory and gave a unified
phys.cst.nihon-u.ac.jp treatment. According to Bricmont, Kupiainen, and L@,
"Electronic address: mukaida@saitama-med.ac.jp the RG transformation for a partial differential equation is

The BerezinskiKosterlitz-Thouless(BKT) transition is
well known as an infinite-order phase transit{dn. The cor-
relation lengthé has an essential singularity at the critical
coupling parameteg.,
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defined as a semigroup transformation on a space of initial
data, which is generated by a scaling transformation com-
bined with time evolution. Koike, Hara, and Adachi used this
general method in the study of the critical phenomenon in
the Einstein equation of the gravitational collapse with for-
mation of black holed8]. Tasaki gave a pedagogical ex-
ample of the RG transformation, where the equations of mo-
tion in Newtonian gravity were analyz¢8].

In Sec. I, we reuse the RG transformation of R,
which enables us to calculate the critical exponerih Eg.
(1) without solving the nonlinear differential equation explic-
itly. Our RGE considers the straight flow line in the original
RGE as a fixed point, where the derivative of the beta func- S 0
tion in this RGE generally has nonzero value. In Sec. lll, we g1 1. jjiustration ofR, and theg function defined in Eq(10).
show that the inverse of the maximal eigenvalue of the scalr simplicity, we take1=2. The dashed line represents the tangent
ing matrix derived from this RGE gives the critical exponentspace aa(7) e S.
o. In Sec. IV, we also study asymptotic behavior of the
running coupling constants in a massless phase and extend 9(t,a), (4)
the well known formula for a logarithmic finite-size correc-
tion to the case of multiple running coupling constants. Innamely,g(0,a,) = a,. The functione’g(e™,a,) is a solution
Sec. V, we exhibit several nontrivial examples inspired byof the RGE(2) as well, because of its scale invariance. Set
antiferromagnetic quantum spin chains. Finally, we give ae then— 1-dimensional sphere whose center is at the origin
summary and discussions in Sec. VI. with radius|ag| =a,. We define a new renormalization-group

transformatiorR ,: S— S as follows:

II. RGE FOR RGE
R, a9=€e’g(s(7),ap)=a(7). 5

A. Formalism
Let us begin with the RGE for a given set ofmarginal ~ Note thatR . has a semigroup property:

operators B
d RT1+ T szoer' (6)
g
a=V(g), 2 The meaning ofR ; is the following: first, chooser. Then
move g, along the solutiong(t,ay) during the times(7).
whereg=(g;, ....g,) is a set of coupling parameters and Here s(7) is determined by the conditiog(s(7),ap)e” e S.

t=log! with | being a length scale parameter. Since the opSee Fig. 1.

erators are all marginal, the right-hand side is expanded as Next let us derive the beta function f®,. Noting that
V(g) is quadratic, we have

V9=2 Clgig;+0(g°), 3 da__ ds
l 4, - atevig(sa)) -

whereC}! is proportional to the operator product coefficients

of the operators. First we neglect the higher-order terms _ - d_s

3 ; ) =ate "V(a) . (7)
0(g~), and later we discuss the irrelevance of the neglected dr
terms.

In general, we find several critical surfaces where the RGIhe length-preserving condition
flow is absorbed into the origin. A phase transition occurs if
the initial coupling constants cross one of the critical sur- a. d_azo ®)
faces. These critical surfaces divide the coupling parameter dr
space into several regions which are phases. In the next sec-
tion, we consider one massive phase surrounded by a set t§ads to the following differential equation fe(7):
critical surfaces, where there are several marginally relevant 2
coupling parameters. In this region, we have a finite correla- ds €'a, )

tion length, which becomes larger as the coupling parameter dr a-V(a)’
approaches the critical surface.

We are going to study the long-distance asymptotic bewith the initial conditions(0)=0. Inserting Eq(9) into Eq.
havior of solutions for the RGE2), which is generally non- (7), we obtain the beta function foR , :
integrable. To this end, let us introduce the RG method ex-
plained in the Introduction. We define a renormalization- _da aaV(a)-Vi(a)a)
group transformation on an—1-dimensional sphere that ,Bi(a)=E= a-V(a) :
forms a set of initial values. We denote the solutgpaf Eq.

(2) with the initial conditionag=(ag1, - . - .8gn) as Note thatg can be written as

(10
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2

_ 0
Pa)= a-V(a)

P(a)V(a), (11

whereP is the nXn matrix that projectsv(a(7)) onto the
tangent space at(7) € S

aiaj
o
For later use, we derive a polar-coordinate representation
of the new RGE. Employing polar coordinatess S is ex-

pressed as

n-1 n-1 FIG. 2. An example in the case of a flow having a turning point.

a=|ao|] siné,,a,cos6,]] sineg,, Here we taken=3. The gray lines represent solutions of the origi-
a=1 a=2 nal RGE(2), while black ones or$ represent our RGEL0). Here
n—-1 a*(a’*) on the incoming(outgoing straight flow line is a fixed

apgcost, [ [ sing,, ... a0 cosen_l). (13)  point of our RGE.
a=3

Since {da/df,}1-.<n_1 are orthogonal to each other, we original RGE(2). Moreover, since/ is homogeneousa is

can make the bas{®,}, orthonormal on the tangent space at also a fixed point for alk e R. Namely, the original RGE2)
ae S by an appropriate rescaling: has a fixed line in this case. If the original RGB has this

fixed line, a point on the fixed line has a nonvanishing scal-

~ _,9a J ing matrix even though the coupling constants are all mar-
&.=f.(a) "2 Ta(@=|-0. (14 ginal at the trivial fixed pointy=0. Therefore, we can di-
“ “ rectly analyze the original RGE near a point on the fixed line
Then, and can show that the phase transition generally becomes of
finite order in this case.
~ ~ da -~ dé, Here, we offer a couple of remarks on the global nature of
Ba=B-€.= g, e=Tald 4, (159  the new RG transformatio®R, defined by Eq.(5). First,
there could be a turning poirg where V(g)-g=0 with
which leads to the RGE in polar coordinates V(g)#0. Let
dé, 1
g, Lf«(@] "Ba(a). (16)
T a, —
. . . In==r. (17)
Returning to the coordinate-free representation @4), lg|

let us find a fixed point of the new RGEO0). The nature of
our RGE near the fixed point determines the universal be-

nary RGE for a f|n|te-o_rder one. Near a fixed pma(,r)__ obvious in a geometric sense thatr) and s(?) are well
moves more slowly as its trajectory tends toward a critical’, o - = —

surface. This implies that the tima7) spent in a neighbor- d€fined. For example, in Fig. 2(r) =e’g ands(r) are de-
hood of the fixed point is a singular function of the initial termined as the definite timg{t, a,) spent during the journey

conditionay. This singularity can occur only at fixed points from a, to g . .
of the new RGE, which allows us to analyze its singular Second, ifg(t,a,) has turning pointsa(r) ands(7) be-

behavior by a linearization near the fixed points. come multivalued with respect ta For example, in Fig. 2,
From Eq.(11), one finds that is definitely a fixed point g(t,a,) has a turning point agj. Suppose thatg™|=|g?|
if P(a)V(a)=0anda-V(a)#0. In this case, sinc¥(ka) is  =b and choose=Ina/b= 7. ThenR, a, has two images,

parallel toa for all real numbers, ais on a straight flow line  grog(1) angemog@). In this case we distinguish the images as
of the original RGE(2). Straight flow lines are put into two a(ro) and a®(7p). Similarly, s(7o) also has the same
classes. If an arbitrary poiton a straight flow line satisfies mytiplicity, which is distinguished in a similar way. In Fig.
a-V(a)<O, it is said to be arincoming straight flow line 2, the image ofR. starting ata, reaches a branch poia’(E
becausa is carried toward the origin in time evolution. On ' T — 1 '
We denote the solution from, to e’g by a¥)(7). The re-

the other hand, i&-V(a)>0 for all a on a straight flow line, o . 5 i 5
it is called anoutgoing straight flow linelf a fixed pointaof ~ Maining part is callec’®(7). Both a)(r) anda'?(7) are

Eq. (10) is on an incoming straight flow line; a is a fixed ~ absorbed into the branch poige”, which indicates the fact
point on an outgoing straight flow line. thatg gives a minimum distance from the origin. If a turning

What happens ifP(a)V(a)=a-V(a)=07? In this case, point corresponds to a maximum distance, the two solutions
V(a) itself vanishes. It means thatis a fixed point of the will escape from the branch point.
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o 1( aia’-aj3)
P(a)V(a)=— _a,a(a—ad) =0, (21

: ()
\\\ /7;;9 P 7 aé
/O|\ " we have a=(*ay/2,a0/2),(+a5,0). Evaluating

o V(a)-a at those points, it turns out thaaf/\2,a/+/2) is

FIG. 3. (a) Flow generated by the original RGES) of theXY  on an incoming straight flow line whileag/\2,—aq/+\/2) is
model. (b) Flow of our RGE(10) with Eq. (18). Fixed points are  on an outgoing straight flow line. The remaining points

denoted by the black circles. Our RGE is not defined at the White(iao,o) are found to be on a fixed line. Note thé(a)

circles, which correspond to a fixed line or turning points in £Q andV(a)-a=0 whena=(0,a,). This means that (8g)

Fig. 3a). corresponds to turning points on trajectories generated by the
_ _ _ original RGE. The flow of our RGE cannot be defined at the
B. Example — the two-dimensional classicaKY model points (0a,) and (+ay,0). Since the example is a simple

Here we exhibit our RGE for the two-dimension@D)  tWo-parameter system, we can understand qualitative aspects
classicalXY model as an illustrative example. The original Of the global flow in our RGE. See Fig(I3.

RGE for theXY model is given by[10] In the last part of the next section, we will continue the
analysis of this model and deriwe from the 8 function in
dg; Eqg. (19). Before doing that, we need to have a representation
dt p of the correlation length in terms of our RGE.
dt 92
do, | ~V@= , (19
92 —0192

_=< lll. CRITICAL EXPONENT OF THE CORRELATION
dt LENGTH IN A MASSIVE PHASE

In this section, we explain how to evaluate the critical
exponento of the correlation length in a massive phase from
the beta functior(10).

We first define a correlation lengi{ay) by the following

with g,=0. Let us first look at the phase structure from Eg.
(18). See Fig. &).

The RGE(18) has two straight flow lineg;+g,=0 and
one fixed lineg,=0. It is well known that each point on the _
fixed line corresponds to the theory of a 2D massless frefPrmula:
boson that is parametrized by a compactification radius of _
the boson field2]. The shaded region in Fig(& is a mass- |90 £(20),20)| = 1. 22)

less phase, since flow in this region is finally absorbed into Aamely, Iné(ap) is the timeg(t,a,) spent in the perturbative

line, g;—g,=0, with g,=0, forms the phase boundary. As

an initial coupling approaches the phase boundary from the e é(g(t,a0))=&(ag) (23
massive phase, the correlation lengttbecomes divergent.
(The correlation length also diverges when the initial cou-under the original RG transformation, which should be sat-
pling constants tend toward a fixed point gs=0 with g; isfied by an intrinsic length scale of the model. The differ-
<0. However, the scaling matrix at this point does not van-ential form of this equation,
ish and the ordinary finite-order phase transition takes place.
Since our interest is focused on an infinite-order phase tran- S v 9€(9) _
- : >, Vi(9) ——+&(9)=0,

sition, we do not consider that case hgre. i J9;

Now we turn to the new RGE for thé¢Y model, which is
given by Eqgs.(10) and (18) with the conditiona?+a3=aZ is obtained by Eq(2), which is well known as an equation
(a,=0). It is explicitly represented as for an invariant length scalg(g). Further, Eq(22) is a natu-
ral generalization of the correlation length used in the 2D
classicalXY model.

da; 1, ., i , )

—_— —(ai—a;3 We consider the case where the running coupling con-
dr _ 28, (19 stants are in the perturbative regi@(t,a)|<1. In this sec-
da, 1, ., tion, we study in particular the long-time asymptotics of a

ar z_az(a2_a1) flow that approaches the origin once and then leaves for the
nonperturbative regiofy(t,ag)|=1, as the flow in the region
0,=|g4| in the XY model. Generally, a quadratic differential
equation such as EQ) admits a flow qualitatively different
from that investigated here. In Sec. VI, we discuss such an

in Cartesian coordinates. Alternatively, using polar coordi-
natesa= (ag sind, ap cosb) (— w/2< < /2), the RGE be-

comes exceptional case.
Next, let us represerg(ay) by the solution of our RGE
do (10). Definerg by e~ Rjag| = 1. From the definition o§(7),
—=—cot 26, (20 .
dr we obtain
owing to Eq.(16) = ds
910 £q.(19). : . Iné(ag)=s(mr)= | dr—. (24)
Next we find fixed points of our new RGE. Solving 0 dr



3692 CHIGAK ITOI AND HISAMITSU MUKAIDA PRE 60
matrix is diagonalized with eigenvalueg by a new coordi-

nate{4.},, our RGE becomes

ao(T} d
"“a critical surface 6;50;:ba50&‘ (28)
The solution is
86,,(7)= 86,( 7o)€ 70, (29

FIG. 4. Flow in our RGE(10) near the fixed poing* on an

incoming straight flow line. The dashed line represents the one- ) ) . .
parameter family of the initial valugy(T). We takeU as the (—1)-dimensional cubic box, whose side

is 2e and whose center ig*. If the scaling matrix has the

Using the differential equatiof®) on the right-hand side, we Unique relevant modé;, a(r) spends time
obtain the integral representation fgfay). Since a flow
treated in this section has a turning point as shown in Fig. 2, 1

the correlation length is represented via b—lln

€

591(70)

(30

| __J’?d e"a?
"= | AT V@D ()

R
—f—d

Employing the integral representation, we argue that thé)andEd as
leading term of¢ is given by 86)(79)=const (T—Te)+O[(T—T¢)2].

in U. Here we have supposed thetr) reachedJ at 7= 7.
Now we vary the initial valuea, by one parametel and
assume thad,(T) intersects a critical surface transversally at
T=T,. See Fig. 4.

As the initial valueay(T) tends toward the critical sur-
face, |86;1(7o)| gets small. It implies thaBo;(rp) is ex-

e’a?
"a@(r) V(@ (7))

(29

(31)

In é(ag)=e" (26)  Sincea(r) spends a finite time outside &f, the divergent

- behavior ofé(ag) is determined by Eqg30) and(31). Thus
if 7in Eq.(17) is sufficiently large. Even though the integral we get
near the turning point seems to diverge, it is only apparent as

discussed in the preceding sect{dr7]. The first term on the In §(a0)~—~e7~—~|T—TC|1’b1, (32

right-hand side of Eq(25) diverges due te” in the inte- _

grand whenr goes to infinity. The second term contributes to Which means

the correlation length with the same order as the first term.

Hence, we can evaluata;) by Eg. (26), which translates o= i (33)
) b,

singular behavior o€(a) into that of 7.

Next, we evaluate the divergent by using the polar-
coordinate expression E(L6) of our RGE. It is obvious that

7 diverges if the initial coupling constaay is on an incom-

ing straight flow line. It implies that- grows whena(r)
passes near a fixed poiat on the incoming straight flow
line.

Suppose thaa(7) goes through a neighborhoddlof a*,
as shown in Fig. 4.

The scaling matrix of the beta functidi6) does not, in
general, vanish at the fixed point and then ghteinction can
be linearized inJ. That is,

n—-1 &'B
[fo(@] "Ba(@= 2, [fo(a®)] - (") 50,
y=1 ﬁﬁy
n-1
=2, Aq(@)d6,, 27)
=
where86,= 6,— ¢’ with {67}, representing the fixed point
a*. The scaling matriXA ,,(a*) describes the large behav-
ior becausea(r) spends a long time itJ. If the scaling

This quantity does not depend strongly on the choice of
a89(T), so thato is a universal quantity in this sense.

It is quite useful to find a relationship between the scaling
matrix A(a*) in Eqg. (27) and thenX n matrix

aB;
Bij(a*)E&—i(a*)

(34)
for practical computing of the eigenvalufis,}, . In the Ap-
pendix, we will show that

A(B)=A(A)U{0}, (39
where A(M) is the set of eigenvalues of a matrM. It
should be noted tha#(a*)=B(—a*) sinceB(a) is an odd
function. This means that the scaling matfixa*) has the
same eigenvalues #§ —a*).

Now we deal with the 2D classic¥dY model again and
show how to deriver by our method. The original RGE is
given by Eq.(18). We saw in the preceding section that
=(ag/\/2,a9//2) is a fixed point on the incoming straight
flow line. The matrixB defined by Eq(34) is
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0 0 sider the situation where we have a critical theory wgth
~ , (36 =0 which describes the system with an infinite volume. In

the system with a finite volume®, we can calculate physi-

i.e., the scaling matri®(a*) has the eigenvalue 2, according ¢a@l quantities with a finite-size correction in the critical
to Eq.(35). Alternatively,A(a*) is directly computed in this theory with a small perturbation of the coupliggobeying
case. From Eq(20) we get RGE(2). If we have an initial couplingy at a lattice spacing

1, the running coupling at the scalebecomesy(InL,ay),
whereg(«,a,)=0. In the case of a single marginally irrel-

cot26=2, (37 evant coupling constam, the originalg function is given by
6=ml4

B(a*)=£(a*)= 1 1
]

aPB; (1—1
- 0 2

. 1d
A@)="540

as expected. V(g)=Cg?+0(g?),

Following our result, Eq(33), we get ] ] ] o
whereC is a universal constant in the sense that it is inde-

o=1/2, (38) pendent of an initial value. The running coupling constant
with an initial conditiona, has the following solution:

which is well known as the BKT universality. Originally it is
obtained integrating the nonlinear RGES) explicitly [10]. g(inL.ag) dg 1
By contrast,' according to_ our approach we can reach the InL= Jao V(9) = Cg(InL,ag) - a
same result in an algebraic way. As we will see in Sec. V, it
can provides even in the case where an original RGE is
not integrable.

(40)

In this solution, we have a well known universal expression

In the above example, the fixed poiat has a unique [11]
relevant mode, so that we can apply the re$s®. If there
are multiple relevant modes in the scaling matrix, we can g(InL,a,) = £i+ 1 IninL (41)
observe other relevant exponentdsl/ib,, ...>0 in an 0 CinL (InL)2'(InL)2)”

appropriate fine tuning of the initial parameters.

Fina]ly, we djs_cuss the irrelevance of the higher-orderrpe leading term is independent of the initial coupliag
terms in the original RGH2). Here, we assume that we gng therefore this formula is useful for fitting numerical or
acquire no extra fixed points by taking into account highereyperimental data of the system with a finite size. For ex-
order terms. If we have higher-order terms, the RG transymple, in one-dimensional quantum spin systems with mar-
formed coupling withr obeys a different equation because of ginaly irrelevant perturbations, logarithmic finite-size cor-
their scale-breaking nature. The scaled coupligqt) rections to the ground state energy
=e’g(e’t,ay) obeys

d !
S =V(@)+0(e g, (39

AEOZ_ c+

T A InInL 1
6L

(InL)3 i (InL)*"(InL)*

Note that the higher-order term becomes smaller and thare calculated from this formul@l) [11,12], wherec is the
RGE takes the scale-invariant form asymptotically. There<central charge and is determined fronC. Sincec andA are
fore, higher-order terms are irrelevant in determining theuniversal constants, we can comparand A to numerical

critical exponent. (experimental data and obtain a clue as to whether a field
theory that derives Ed41) is or is not truly effective. There-

IV. LOGARITHMIC DEPENDENCE OF MULTIPLE fore, it is important to derive a formula corresponding to Eq.

MARGINALLY IRRELEVANT COUPLING CONSTANTS (41) where there are multiple marginally irrelevant cou-

plings. In this section, we shall show that this universal na-
So far, we have studied solutions of R@H in a massive ture holds in this case as well.
phase. Our method is also applicable to studying asymptotic As we mentioned above, we examine the case where all
behavior of a solution in a massless phase. In this section, we coupling constants are marginally irrelevant, so that flow
study the logarithmic dependence of the multiple runningof Eq. (2) is absorbed into the origin. In this case, there are
coupling constants in a massless phase. no turning points on the flow, which implies that the trans-
It is important to clarify finite-size corrections in a system formation R ,a, defined in Eq.(5) is single-valued with re-
with marginally irrelevant operators. For example, a numeri-spect tor. Therefore, we can write down a formula similar to
cal simulation in a spin system can calculate energy levelgq. (25) as
only for small degrees of freedom. A theoretical formula for
the finite-size correction is useful to extrapolate numerical . aZe”
data to those in the infinite system. If the system can be In L:_f ! 0
described in a critical theory with marginally irrelevant per-
turbations, physical quantities acquire logarithmic finite-size
corrections. Here we are interested in a system with a finitd’he running coupling constag(InL,a,) is obtained by
volumeLP described by a theory with marginally irrelevant
coupling constantg, whereD is the space dimension. Con- g(lnL,ay)=e "a(7). (43

d7/—————— (42)
o a(7')-V(a(r))
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In order to derive the logarithmic dependenceg@hL,ay),
we first solve Eq.(42) for 7 when L is sufficiently large.
Then we apply the result to E@3).

As we have seen in the preceding section, when weltake
sufficiently large, the contribution from a neighborhddaf
a fixed pointa* on an incoming straight flow line dominates
in the integration of Eq(42), which can be evaluated from
the linearized new RGE ). Suppose thaa(7) entersU at
7= 719. Equation(42) becomes

aOeT
InL=— d —_— (44)
o a(r')-V@a(r'))
for largeL.
Writing
a(r)=a*+da(r), (45

da(7) in the polar-coordinate representation obeys the lin-
earized RGE(28) in U. Its solution has the following
asymptotic form for larger:
n-1
oa Ja
sa(1)= D, — 860.(1)=— 560}(79)e’ """, (46)
a=1 80’ 070’

a 1

whereb,<0 is the maximal eigenvalue of the scaling matrix
A(a*) defined in Eq.27). We expand the integrand in Eq.
(44) as
aZe”
a(7)-V(&a(r))
aZe”

B B (6a-V]aear)a* - V()
Ca -V(a*)

a*-V(a*)

+0(8a%) |,

47

and calculate the right-hand side of Eg4). First we com-
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Sincee* and C are completely determined by the explicit
form of V, the result in the leading order is universal.

Next, let us go to the next-to-leading term. After evaluat-
ing the next-to-leading term in the integfdH) with the help
of Eqgs.(46) and (47), we represene’ in 1/InL expansion.
The calculation is easily performed and finally we obtain

f

! e + B 7 (—1<b;<0)
ClnL™  (InL)* b1 40
g(InL,ay)={ ! e*+B’InInLE (by=-1)
’ CinL (InL)? 46,
kCIn Le*+(|n L)Ze* (by<—1),
(52)

where the constantB, B’, and B” depend on the initial
condition, in contrast to the leading term. The result implies
that, if —1=<b;<<0, we have to take into account the non-
universal nature of the subleading correction, even though
0(g® corrections in the original renormalization-group
equations give universal coefficients to this subleading term.

V. EXAMPLES

Here, we consider the level-SU(N) Wess-Zumino-
Witten (WZW) model in two dimensions as a critical theory
[2]. This model has traceless chiral curred®(z) and
N) satisfying the following operator
product expansiofiOPBE):

adabc

J20(2)3°40)~ ——+= [5bc3ad 2) = 6,¢3°%(2)],

5ad5bc

J30(2)3°¢(0) ~ +4 8pcd?%(2) — 8,03°%(2)1,

pute the leading-order contribution. The leading integration

is easily performed as follows:

T age
= [ T4
o a-v(ar)

ag

a*-V(a*)

ag

* *e
a*-Va*)

[ T

(e’

e70)=—

(48)

Sincea- V(a), which is a cubic function ofa,}, is negative
ata*, we can write

a*-V(a*)=-Caj, (49)
whereC is a positive constant defined by
C=-¢"-V(e) (50)

with e =a*/a,. From Eqgs.(43), (48), and(49), we get, in
the leading order,

e*

glnL,ay)=e "a* = (51

CinL

J25(2)J°4(0)~0, (53)
where~ stands for equality up to regular terms. Using these
currents, we can constructN¢—1)? marginal operators
J3(2)JY(2). In this section, we study models perturbed by
some of the marginal operators which are inspired by a quan-
tum spin chaif12,3].

A. Two-parameter system
First, we consider a simple two-parameter system that in-
cludes the BKT universality as the special ca¢e 2. We
define theSU(N) symmetric marginal operate;bl(z,?) and
the symmetry breaking on¢?(z,z),

N
2) >, J(2)3%4(2),

1

Mz

Pz

1

oy

N N
PAz,2)=2, 2 1*(2)3%2),

a=1 b=1

(54)
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which satisfy the following closed OPE:

#1(2,2) $*(0,0)~ $(0,0),
2|2
— -2
¢1<z,z>¢2(o,0>~le(o,m—&(o,on,
¢2<z,?>¢2<0,0>~$ 2(0,0) (55)
V4

by Eq.(53). The action integrald of the perturbed theory is

2 d?z =
A:AWZW+E gif o '(z,2). (56)
=1 ™

The OPE formula Eq.(55) yields the following two-
parameter RGE:

dg; _
gt~ V(9 =091(Ng1 +29,),

dg,

W=V2(g)=—g2(291+ Ng,). (57
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1

FIG. 5. (a) Flow in our RGE. The black circles represent fixed
points while the white ones represent branch points corresponding
to turning points on the flow in Eq57). (b) lllustration of the flow
in Eq. (57) derived by our RGE, which is drawn in gray curves.

N

"Nt (50

o

which is identical to that obtained by the explicit solution of
the differential equation in Ref3]. Note that the result Eq.
(60) is also valid in the case dfi=2, although the scaling
matrix cannot be defined aj}: c; corresponds to a fixed line
of the original RGE(57) if N=2.

Any theory ofc=1 CFT with marginal perturbations has
the critical exponentr=1/2 oro=1, as is well knowrj15].
This is because the level9U(2) WZW theory is the maxi-
mally symmetric theory ic=1 CFT and because it gives

In the case oN=2, the RGE reduces to the same form 8Sthe most general theory with marginal perturbatiorcial

the RGE of theXY model with an appropriate linear trans-
formation, which was extensively studied in Secs. Il and IlI.

Here we restrict ourselves to the caseNst 3.
The beta function in our RGELO) for Eq. (57) is

a,(Nay+2a,)a3
Br@=a;— — 5 ,
af(Na;+2a,) —as(2a;+Nay)
—ay(2a;+Nay)a3
Bo(a)=ay (58)

a2(Na;+2a,) —a5(2a;+Nay)

Solving B(a)=0, we have the following six fixed points:

+(ag,0), *(0a0), and *(ag/\2,—ay/\2). Evaluating

CFT [16]. The most general theory with marginal perturba-
tions describes a quantudY Z chain with spin 1/2. The
infinite-order phase transition occurs at a line of X&X
chain. This corresponds t8=2 in our analysis. In the case
of c>1 CFT with marginal perturbation, however, we show
some new universality classes with nontrivial critical expo-
nentso Eq. (60) for N>2. For example, the transition in the
case ofN=3 describes the gapless Haldane gap phase tran-
sition with the exponentr=3/5 from the SU(3) symmetric
line g,=0 in an isotropic spin-1 chaif8].

The result Eq(59) is also useful when we figure out the
qualitative picture of the flow in the original RG6G7). For
this purpose, we need to know a branch point, which corre-

a-V(a) at those points, we find that there are the three fixedPONds to a turning point on a flow in E(7), by solving

points on incoming straight flow lines, —(a4,0)
=c;, (0@g)=c,, and (—ag/\2,ay/\2)=c;. The matrix
B(a) in Eq. (34) at those points becomes

0 0 24N
B(c))= 2+N |, B(cy)=| N :
N 0 0
0 0
B 2N (1L 2+N 59
(C)=7=2n11 1~o—2N’ (59

which means; andc, are unstable fixed points whilg is
stable for allN=3.

a-V(a)=0. The solution is* (ay/+2,a9/+/2) for all N=3.
A flow in our RGE changes its direction at these points, as
we depicted in Fig. 2. Combining the result E§9) and the
fact that the scaling matrix at ¢ (i=1,2,3) has the same
eigenvalues as a, we get the global flow of our RGE, as
in Fig. 5(@). It derives qualitative features of the RG flow in
Eq. (57), which are drawn in gray curves in Fig(th. We
notice that the regiogy,(0, g,) is a massless phase, where
solutions in the original RGE are all absorbed into the origin
along the incoming straight flow ling;+g,=0 (g;<0).
The incoming straight flow lines passimg or c, form the
phase boundary.

Next, we discuss logarithmic dependence of the running
coupling constants in the massless phase. Let us introduce
new variables X,Y)=(g9;—0,,—91—J,). The original

Divergence of the correlation length is governed by theRGE has the incoming straight flow liné=0 (X<0) on

unstable fixed points and, according to the formula i8),

which c3 is situated. According to our result E¢G2), the
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running coupling constarX(InL,a;) has the leading loga- _ 2
rithmic dependence 1/In, whose coefficient is universal. In ¢°(2,2)4°(0,0~ — ¢°(0,0),
contrast,Y(InL,a,) has the dependence (I **° with a 2l

nonuniversal coefficient, wherd=(N+2)/(2—N)<-1

for N=3. Hence the 1/(lh)? contribution that belongs to #°(2,2) $*(0,0)

the next-to-leading term iX(InL,a,) gives subleading con-

tribution. This implies that, if we can determigg terms in 0 1 5

the original RGE(57), universal Inl./(InL)? dependences N@( N §¢ (0,0- §¢ (0’0)_ﬂ)¢ (0’0))*
can be obtained in this example. We remark that the loga-
rithmic dependence of (InL,ay) is consistent with the result
from the explicit solutior3].

1
$°(2,2) $*(0, 0)~W< - —¢°(0 0+5 ¢2(0 0))
B. Three-parameter system

175 3\ 41
Here, we consider a nontrivial three-parameter system, an ¢(2247(0,0
SU(2)-invariant marginal perturbation of the level-1 W 1 (

WZW model whose RGE becomes nonintegrable. This NW
z

6 11 3
- g¢°(0,0)+ §¢1(0,0)+§¢2(0,0)) :
model may describe aB8=3/2 quantum spin chain around
the SU(4) symmetric Uimin-Lai-Sutherland modédl3,14
with some SW2) invariant perturbation. The SB) transfor- d)l(ZE) $%(0,0
mation is generated by

1 9 1 6
~—( - —¢%0,0— —¢1<o,o>——¢2(o,o>),
- |22\ 10 2 5
Trf dz J(z)L+Trf dzJ(z)L, (61
¢2(z,?>¢2(o,0>~&(3¢°(o,0>+3¢2(o,0>). (65)

whereL=(L!,L? L% is the spin matrix in the spin-3/2 rep-
resentation. Marginal operators invariant under the(23U

transformation are constructed as follows: The RGE derived from the OPE is
j dgo_v (9)= — g2+ 30091 3% 9092 99102 3_9%
$zD=Tr S (~D)™DT, DT, m. j=0123  dt 09T TRTTET T e T 2
m=—j
(62 ,
dg, _ _gogl 1191 019,
ar  Vi9= 0 2

where T , satisfies[ L2, T; ]=j(j +1)T; n and [L3T; ]
=mT; . Using the tracelessness property of the currents,

we get dg; _\, =399 301 9092, 6910 30;
at 297710 T 10 2 5 2
3 (66)
I(2,2)=0, 63
jz’o #(2.2) 63 We find that our RGE for Eq(66) has the following seven

fixed points on incoming straight flow lines:

which indicates that there are three independent marginal
operators ing°, . .. ,¢°. Here we consider the perturbation c,=(a,0,0), Co= ( ao>

2%/

é fiqy(zz) (64) (3%[%\/?3%)
1470

Employing the OPE(53) and the normalization condition _3a. 5a. 2a 5
Tr T mTj'.m = 0jj» Smmy » We find the following operator :<_°,_0,_°\f),
product expansions: 526" 26" 5

33
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T tion of our RGE for Eq.(66). The black dots represent the fixed
180 12 2\/§

points, which correspond to those in Fig. 6.

((i239\/§+ 85\/4—1) (i13\/g+5\/4_1) 1 ) FIG. 7. Vector field defined by the polar-coordinate representa-
X , )

The corresponding eigenvalues of the scaling matrix at each Figure 7 shows the vector fieldi¢/dr,d6/d7) given by

fixed point are calculated as Eq. (16) near the fixed points. From this figure, we find that
31 31 5 1 most points in this region go to the outside of the region or to

¢ ==, o (_,_)' Cs; (__) the fixed pointc,.
22 2°2 33 The destination of a trajectory toward the outside of this

region is a point on the cuna V(a)=0. This implies that a
¢ (—5-11), cs: (5_5 4_1) flow of the original RGE(66) corresponding to this flow on
' ' ' ' \2727)° S approaches the origin once and escapes from it. Namely,
those points belong to a massive phase. On the other hand, a
—4+./631 —4— 631 flow that terminates at the stable fixed po@tcorresponds
3 , 8 ) to a flow of the original RGE absorbed into the origin along
the incoming straight flow line. The set of those points mov-
=(2.639964Y ...,—3.6399647Y . ..). ing toward the fixed point, is in a massless phase.
In general, we have two cases corresponding to massive
Namely, they are classified into the twice-unstable fixedand massless phases described above. However, there are
pointsc, ,C,,Cs, the once-unstable fixed points,c., and the  exceptional points that lie on the solutions starting at one of
stable fixed point,. The critical exponents determined by the twice-unstable fixed points ,c,,cs and arriving at one
the once-unstable fixed pointg andc.. are, respectively,  of the once-unstable fixed pointg,c. . These exceptional
solutions correspond to critical surfaces that give the phase
3 8 boundary determined in the original RGE. More precisely,
7= g (—4+ \/@) ' (67) the set of points on the exceptional trajectories is the inter-
section between a phase boundary determined by the original
which must be observed most likely in this model. In orderRGE and the spher& It should be noted that the phase
to detect other exponents, fine tuning of the initial couplingboundary in the coupling spa¢¢g;,9.,93)} forms a coni-
parameters to the twice-unstable fixed points is necessary, §8! surface becausé(g) is homogeneous.
in the multicritical behavior of ordinary second-order phase Figure 8 depicts a flow numerically solved near the criti-
transitions.

Logarithmic dependence of the running coupling con-
stants is controlled by the stable fixed pomt Since the
largest eigenvalue at the fixed point is less that, the
sub-leading contribution is 1/(kn)? in this case.

It is helpful to study our RGE for Eq66) numerically in
order to better understand our results. Figure 6 exhibits the
seven fixed pointg,, ... ,c+ in polar coordinates,

Cs,

a=ay(sinfdsin¢,sind cos¢,cosh), (68)

with — 7/2< ¢p<37/2, 0<H< .

The curve in Fig. 6 represents the equataivV(a)=0,
which corresponds to the set of branch points of the RG
transformationR .. All fixed points belong to the region
{ala-V(a)<0} because they are on incoming straight flow FIG. 8. Solutions numerically computed near the exceptional
lines in the original RGE. ones.
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cal surfaces. Using the numerical results, Figs. 7 and 8, let us g2
consider divergent behavior of the correlation length. Sup- 0.4
pose that an initial valua, changes toward the phase bound-
ary betweert; andc, such as the dashed like As a, tends
to the phase boundary, the flow startingagipasses near the
fixed pointc; and spends a long time there. The result Eq.
(67) indicates that the critical exponent detected in this
case is 3/5. Similarly, if, varies along lines such &or C, 0.2
one observes =8/(— 4+ 631), since the solution starting
at a; goes through a neighborhood of the fixed poinitsor
C_.

Finally, we comment on the logarithmic dependence of
the coupling constants in this example. Figure 7 implies that
a general massless flow is controlled by the twice-stable
fixed pointc,. The universal features considered in Sec. IV FIG. 9. Flow in Eq.(69) with q=2.
are valid if the initial valuea, is sufficiently far from the
phase boundary. However, a& approaches the phase dog;
boundary from a massless side, the solution is gradually af- dt ( 01(9:+95)
fected by the once-unstable fixed points. More profound in- =V(g)

92(q91+92)

vestigation will be needed in this case. %
dt

(69

VI. SUMMARY AND DISCUSSION has a flow such as in Fig. 9 §>1.
) ) ) o Namely, the equation has solutions that first escape from
In this paper, we first showed an algebraic way of findingine origin and then turn back to it. See Fig. 10. In this case

the critical exponend in Eq/(1), which was heretofore com- \ye cannot directly apply the result E(33). Even in that
puted by integrating RGE explicitly. The procedure is sum-case as we show in the following, the beta function in Eq.

marized as follows. o . (10) is helpful for understanding a qualitative picture of these
(i) Derive the RGE defined in Eq10) from the original  gojytions. In fact, we first notice that there are only four

RG!.E(Z).' . . ) o . straight flow lines org;=0 or ong,=0. Next let us com-
(ii) Find stra_lght fI0\_/v lines in the original RGE, which pute the scaling matrix in Eq(27) at the fixed points

correspond to fixed points of our RGE. (+a,,0) and (0+a,) of our RGE(10). We find that it has

(i) Compute the scaling matrix at a fixed point on ANgigenvalues *q at (=a,,0) and 0 at (Qtap). If g>1,

incoming straight flow line and diagonalize it. solutions for the RGE near#(a,,0) is absorbed into the
(iv) If the scaling matrix has the unique relevant mode.fjyeq points as depicted in Fig. 10. The integral curve does
the correlation length indicates singular behavior by one;, change the direction at the other fixed points+(&)
parameter fine tuning and the exponentis equal to the  pocpse the eigenvalue of the scaling matrix vanishes at
inverse of the relevant eigenvalue. If the scaling matrix hagy,gse points. Therefore, by continuity, we conclude that there
multiple relevant modes, we can observe multicritical behavy, st be at least two branch points SnMoreover, the solu-

lor. , —_ tion must escape from the branch points. As we pointed out
Second, we derived the logarithmic dependence of runy, ihe |ast part of Il A, it means that E¢69) has a flow that

ning coupling constants in a massless phase where all thgg; jeaves from the origin and turns back to it, as depicted in
coupling constants are marginally irrelevant. It was foundFig. 9.

that the coefficient of the leading logarithmic term is univer-

sal in the sense that it does not depend on an initial value of

the running coupling constants, which is the same result as in 92
the case of a single marginally irrelevant coupling constant.
However, coefficients of subleading terms are nonuniversal. ag
They could disturb the universal nature of subleading terms
that come from higher-loop corrections to the original beta
function.

We obtain both results by applying the RG transformation
(5) to the original RGH?2), which was inspired by the recent
developments of RG transformations to nonlinear differential
equationg6—8] .

It should be noted that our study is focused, when we
derive the first result, on a flow that goes once toward the —aop
origin and then leaves for a nonperturbative region. In gen-
eral, the quadratic differential equati@) with Eq. (3) could
have a flow qualitatively different from those we considered. FIG. 10. Flow in our RGE for Eq(69) with q=2. The white
For example, we numerically find that the equation circles correspond to turning points.
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The study of the universality classification of infinite- T Ya)=f(a) (& ,e). (A3)
order phase transitions is now in progress. In two dimen- 1k ' '
sions, it should contribute to the analysis of el CFT. In \ow we examine the form of thaxn matrix T~ 'BT. As
higher than two dimensions, a nontrivial exponent in aNihe first step, let us compute 1B:
infinite-order phase transition might be observed experimen- '

tally in some phenomena. n n o8
- 1~ k
> Til(@)By(a*)= 2 fi(a*) (8,80 (a*)
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APPENDIX: RELATIONSHIP BETWEEN da Jq )
THE EIGENVALUES OF A(a*) AND B(a*) Ti=le. 2= 25 (Isjsn-1). (A5
i i

In this Appendix we prove Eq35). The claim is that a )
set of the eigenvalues @ (a*) in Cartesian coordinates is Using Egs.(A4) and(A5), we get
equal to that ofA(a*) in polar coordinates plus extra zero

eigenvalue. —1/ % \T (A
To show that, we add/a=e¢, to the basige,}1<,=n_1 1<k2lsn Tirc (@) Bia(@) Ty ()
of the tangent space af7) € S. Then the sefg};—;~, be- B, P
comes an orthonormal basis of thedimensional space of = > fia*) —( *)—'(a*)
coupling constants. Consider the<n matrix 1<kef=n Ja 90,
Tij(a)Efj(a)(Q;é])’ (Al) =f (a*)fla_ﬁi(a*) (A6)
N 90
where {e},<;<, is the orthonormal basis that defines the !
Cartesian coordinatesg{, ...,g,) and the bracket x,y) for 1<i<n and 1<j<n—1.
means the inner product. The functiéy(a) is given in Eq. The result indicates that *BT has the following form:
(14) for 1<j=<n-—1. In addition,
A(a*) *
fo(a)= j—: =1 (A2) (TBM@)=|, 4 o)’ (A7)

have the inverse of as causeB,(a)=[p(a),e,]=0 for all a.
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